by:Elias Reichel
KAANAPALI, Hawaii — Sustained-release corticosteroids will play a significant role in retinal vascular disease, but the current implants still need improvements, one presenter here said.
"It is important to realize [steroids] will have a continued role in our treatment of diseases. They may also serve for adjunctive [therapies] like stem cell treatments and [instances] where transplantation or immunoreactions may occur," Elias Reichel, MD, who discussed outcomes using Ozurdex (dexamethasone intravitreal implant, Allergan) and Iluvien (fluocinolone acetonide intravitreal implant, Alimera), said at Retina 2011. "So, having a better delivery system for corticosteroids is very useful for many of the diseases we are seeing in our offices."
Challenges include needing to achieve and maintain clinically effective concentrations in the vitreous over time while maximizing efficacy and minimizing adverse effects, Dr. Reichel said.
As part of a 6-month study, the dexamethasone implant demonstrated 2- to 3-month peak efficacy, had a low incidence of IOP issues and conferred a cataract progression of approximately 5%. Additionally, 45% of the patients gained three lines of visual acuity, Dr. Reichel said.
The U.S. Food and Drug Administration has approved the device for all retinal venous obstructive disease.
The fluocinolone implant is now part of a 36-month study and has demonstrated efficacy to at least 30 months. Between 30% and 40% of patients gained at least three lines of visual acuity. However, the device has a moderately higher risk of IOP issues and a cataract progression rate of 50%, according to Dr. Reichel.
The device has received a complete response letter from the FDA.
"Current formulations that we have are good but can be better," Dr. Reichel said. "We really have to look at longer duration and this reduced risk trade-off."
* Disclosure: Dr. Reichel is a consultant to Alimera and Allergan.
Showing posts with label blindness. Show all posts
Showing posts with label blindness. Show all posts
Sunday, January 23, 2011
Saturday, January 15, 2011
Stem cell therapy for macular degeneration
By Jill U. Adams, Special to the Los Angeles Times
The FDA has approved a new study aimed at fighting dry age-related macular degeneration.
About 10 million Americans suffer some degree of vision loss caused by age-related macular degeneration, and that figure is expected to grow as more baby boomers become senior citizens. There is no cure for the disease, but last week the U.S. Food and Drug Administration gave a green light to an unusual clinical trial that seeks to restore patients' sight by employing human embryonic stem cells.
None of the stem cells will be injected into patients; instead, they are grown into another kind of cell that will be delivered to the back of the eye, where the retina is damaged by the disease. The hope is that the cells will help repair the damaged retinal tissue.
The company behind the trial, Santa Monica-based Advanced Cell Technology Inc., developed the therapy to treat Stargardt's macular dystrophy, a rare childhood version of macular degeneration that affects about 1 in 10,000 kids. The FDA gave the company permission to test the therapy in Stargardt's patients in November. However, if they work, the cells would have a much bigger effect as a treatment for age-related macular degeneration.
Here's a closer look at the disease and the new therapy.
What is age-related macular degeneration?
Age-related macular degeneration is the leading cause of vision impairment and blindness among people who are 65 and older, says Dr. Jose Pulido, an ophthalmologist at the Mayo Clinic in Rochester, Minn. The dry version of the disease begins with tiny deposits of fat and protein — called drusen — that appear in the center of the retina, called the macula. As the deposits grow in number and size over the course of years, things begin to look blurry in the center of a person's field of vision. As the disease worsens, the blurriness may progress to a blind spot.
What causes it?
The main problem is that light-sensing cells in the macula, called photoreceptors, slowly break down. This is thought to be caused by the loss of another population of cells, called retinal pigment epithelial (RPE) cells, which support the photoreceptors in a number of ways.
Among other things, the RPE cells release growth factors important for photoreceptors to thrive. "The RPE are also the garbage trucks of the retina," removing toxic byproducts that the retina makes as it performs its light-sensing function, says Stephen Rose, chief research officer for the Foundation Fighting Blindness, a fundraising organization based in Columbia, Md.
Dry age-related macular degeneration can also progress into wet age-related macular degeneration, in which blood vessels grow abnormally and leak fluid into the macula. It's a much more aggressive form of the disease, but it's also more treatable.
How can human embryonic stem cells help?
The stem cells are grown into healthy replacement RPE cells and injected into the retina, says Gary Rabin, Advanced Cell Technology's chief executive. The company hopes the lab-grown cells will replace the dying RPE cells and keep vision intact — or even restore it to some degree.
"We've had incredible success with this in animal studies," Rabin says. A study published in the journal Stem Cells found that the RPE cells restored eye function in sick mice and rats to "near-normal levels," and another study in Cloning and Stem Cells reported that the treatment improved vision in affected rats until it was 70% as good as that of healthy animals.
Of course, success in animal studies doesn't always translate to humans. In addition, the eyes of people in their 50s and 60s likely present "a very different milieu for the RPE cells to try to hook onto," Pulido says.
Rose adds that the treatment, if it works, wouldn't amount to a cure because it doesn't address the reason why RPE cells deteriorate in the first place. But it would buy time for patients, delaying vision loss for perhaps years. "That's huge," he says.
What will the new trial assess?
The FDA granted permission to conduct a Phase I/II clinical trial, which is essentially a safety trial, that will involve a dozen patients. The first patients will get a very low "dose" of cells — 50,000 — and will be monitored for any untoward effects.
"If there are no safety issues after three-ish months, we will increase the dose [to a level where we] hope to see efficacy," Rabin says. "We anticipate that the photoreceptor cells will awaken and that there will be a gradual increase in visual acuity over time." For now, the protocol calls for a one-time treatment of up to 200,000 cells.
Aren't there ethical concerns about using human embryonic stem cells?
Generally speaking, many people are troubled by research involving human embryonic stem cells because they are typically made by dismantling — and thus destroying — embryos that are a few days old.
Advanced Cell Technology uses a proprietary technique to extract a single cell from a young embryo, allowing the rest to remain intact and develop normally, Rabin says. A similar method is routinely used to biopsy embryos for pre-implantation genetic diagnosis, in which embryos created through in vitro fertilization are scanned for genetic disorders before being transferred to a uterus.
The FDA has approved a new study aimed at fighting dry age-related macular degeneration.
About 10 million Americans suffer some degree of vision loss caused by age-related macular degeneration, and that figure is expected to grow as more baby boomers become senior citizens. There is no cure for the disease, but last week the U.S. Food and Drug Administration gave a green light to an unusual clinical trial that seeks to restore patients' sight by employing human embryonic stem cells.
None of the stem cells will be injected into patients; instead, they are grown into another kind of cell that will be delivered to the back of the eye, where the retina is damaged by the disease. The hope is that the cells will help repair the damaged retinal tissue.
The company behind the trial, Santa Monica-based Advanced Cell Technology Inc., developed the therapy to treat Stargardt's macular dystrophy, a rare childhood version of macular degeneration that affects about 1 in 10,000 kids. The FDA gave the company permission to test the therapy in Stargardt's patients in November. However, if they work, the cells would have a much bigger effect as a treatment for age-related macular degeneration.
Here's a closer look at the disease and the new therapy.
What is age-related macular degeneration?
Age-related macular degeneration is the leading cause of vision impairment and blindness among people who are 65 and older, says Dr. Jose Pulido, an ophthalmologist at the Mayo Clinic in Rochester, Minn. The dry version of the disease begins with tiny deposits of fat and protein — called drusen — that appear in the center of the retina, called the macula. As the deposits grow in number and size over the course of years, things begin to look blurry in the center of a person's field of vision. As the disease worsens, the blurriness may progress to a blind spot.
What causes it?
The main problem is that light-sensing cells in the macula, called photoreceptors, slowly break down. This is thought to be caused by the loss of another population of cells, called retinal pigment epithelial (RPE) cells, which support the photoreceptors in a number of ways.
Among other things, the RPE cells release growth factors important for photoreceptors to thrive. "The RPE are also the garbage trucks of the retina," removing toxic byproducts that the retina makes as it performs its light-sensing function, says Stephen Rose, chief research officer for the Foundation Fighting Blindness, a fundraising organization based in Columbia, Md.
Dry age-related macular degeneration can also progress into wet age-related macular degeneration, in which blood vessels grow abnormally and leak fluid into the macula. It's a much more aggressive form of the disease, but it's also more treatable.
How can human embryonic stem cells help?
The stem cells are grown into healthy replacement RPE cells and injected into the retina, says Gary Rabin, Advanced Cell Technology's chief executive. The company hopes the lab-grown cells will replace the dying RPE cells and keep vision intact — or even restore it to some degree.
"We've had incredible success with this in animal studies," Rabin says. A study published in the journal Stem Cells found that the RPE cells restored eye function in sick mice and rats to "near-normal levels," and another study in Cloning and Stem Cells reported that the treatment improved vision in affected rats until it was 70% as good as that of healthy animals.
Of course, success in animal studies doesn't always translate to humans. In addition, the eyes of people in their 50s and 60s likely present "a very different milieu for the RPE cells to try to hook onto," Pulido says.
Rose adds that the treatment, if it works, wouldn't amount to a cure because it doesn't address the reason why RPE cells deteriorate in the first place. But it would buy time for patients, delaying vision loss for perhaps years. "That's huge," he says.
What will the new trial assess?
The FDA granted permission to conduct a Phase I/II clinical trial, which is essentially a safety trial, that will involve a dozen patients. The first patients will get a very low "dose" of cells — 50,000 — and will be monitored for any untoward effects.
"If there are no safety issues after three-ish months, we will increase the dose [to a level where we] hope to see efficacy," Rabin says. "We anticipate that the photoreceptor cells will awaken and that there will be a gradual increase in visual acuity over time." For now, the protocol calls for a one-time treatment of up to 200,000 cells.
Aren't there ethical concerns about using human embryonic stem cells?
Generally speaking, many people are troubled by research involving human embryonic stem cells because they are typically made by dismantling — and thus destroying — embryos that are a few days old.
Advanced Cell Technology uses a proprietary technique to extract a single cell from a young embryo, allowing the rest to remain intact and develop normally, Rabin says. A similar method is routinely used to biopsy embryos for pre-implantation genetic diagnosis, in which embryos created through in vitro fertilization are scanned for genetic disorders before being transferred to a uterus.
Monday, December 27, 2010
Zinc and Macular Degeneration
By: Admin
Are you someone who has realized that they are suffering from age related macular degeneration?
Our sense of sight is something that is incredibly important to us, and the idea of having it threatened can be terrifying. The issue is that age related macular degeneration, often abbreviated to AMD is relatively common and after the age sixty, there is a thirty percent chance that this disorder can be developed and it is highly recommended that you use a antioxidant supplement as treatment/ therapy for macular degeneration.
The more research that you do into this condition and into the things that might have a hand in causing it, the more likely it is that you are going to see zinc listed as being something that can help this condition.
Are you someone who has realized that they are suffering from age related macular degeneration?
Our sense of sight is something that is incredibly important to us, and the idea of having it threatened can be terrifying. The issue is that age related macular degeneration, often abbreviated to AMD is relatively common and after the age sixty, there is a thirty percent chance that this disorder can be developed and it is highly recommended that you use a antioxidant supplement as treatment/ therapy for macular degeneration.
The more research that you do into this condition and into the things that might have a hand in causing it, the more likely it is that you are going to see zinc listed as being something that can help this condition.
Monday, December 20, 2010
New Investment to Boost Gene Therapy Development
National Neurovision Research Institute (NNRI), the Foundation Fighting Blindness’ clinical trial support organization, announced today that one of its key partners, biopharmaceutical company Oxford BioMedica, has established a collaboration with sanofi-aventis, a major international pharmaceutical company, to develop and commercialize gene therapy treatments for vision-robbing retinal degenerative diseases that affect tens of millions of people around the world.
The collaboration will significantly bolster the development of the following gene therapy products: StarGen™ for the treatment of Stargardt disease, a form of early-onset macular degeneration; UshStat™ for the treatment of Usher syndrome, the leading cause of deaf-blindness; and RetinoStat® for the treatment of age-related macular degeneration, the leading cause vision loss in people 55 and older in developed countries.
The development of treatments for these and other retinal degenerative diseases is a key goal of the National Neurovision Research Institute and is the basis for its partnership with Oxford BioMedica. In 2006, Paul and Diane Manning, with the National Neurovision Research Institute, established a partnership with Oxford BioMedica to advance gene therapies for these and other related retinal degenerative diseases.
“The investment from sanofi-aventis is a wonderful boost for the development of Oxford BioMedica’s gene therapy products and will greatly enhance our ability to move these emerging treatments into and through the clinical trial process,” says Stephen Rose, Ph.D., chief research officer, Foundation Fighting Blindness. “This collaboration affirms the great potential for gene therapy to treat and cure a number of retinal degenerative diseases including Stargardt disease and Usher syndrome that, as rare diseases, often do not receive the attention or investment necessary to bring about promising treatments.”
“An important goal of the Foundation, through NNRI, is to attract investment from large pharmaceutical companies for the development and production of treatments for inherited retinal disease,” says Morton Goldberg, M.D., chairman of the board of NNRI. “The NNRI-Oxford partnership is an excellent model of how NNRI collaborations can accelerate the translation of laboratory-based research into clinical trials, ultimately getting successful treatments for rare diseases like inherited retinal degenerations to the market and out to the people who need them.”
Based on the agreement, Oxford BioMedica will receive an upfront payment of $26 million and a further $24 million from sanofi-aventis over a three-year period.
The treatments will utilize Oxford BioMedica’s LentiVector® gene delivery technology to deliver healthy vision-saving genes to the retina. For more information on this technology, visit www.oxfordbiomedica.co.uk/
The collaboration will significantly bolster the development of the following gene therapy products: StarGen™ for the treatment of Stargardt disease, a form of early-onset macular degeneration; UshStat™ for the treatment of Usher syndrome, the leading cause of deaf-blindness; and RetinoStat® for the treatment of age-related macular degeneration, the leading cause vision loss in people 55 and older in developed countries.
The development of treatments for these and other retinal degenerative diseases is a key goal of the National Neurovision Research Institute and is the basis for its partnership with Oxford BioMedica. In 2006, Paul and Diane Manning, with the National Neurovision Research Institute, established a partnership with Oxford BioMedica to advance gene therapies for these and other related retinal degenerative diseases.
“The investment from sanofi-aventis is a wonderful boost for the development of Oxford BioMedica’s gene therapy products and will greatly enhance our ability to move these emerging treatments into and through the clinical trial process,” says Stephen Rose, Ph.D., chief research officer, Foundation Fighting Blindness. “This collaboration affirms the great potential for gene therapy to treat and cure a number of retinal degenerative diseases including Stargardt disease and Usher syndrome that, as rare diseases, often do not receive the attention or investment necessary to bring about promising treatments.”
“An important goal of the Foundation, through NNRI, is to attract investment from large pharmaceutical companies for the development and production of treatments for inherited retinal disease,” says Morton Goldberg, M.D., chairman of the board of NNRI. “The NNRI-Oxford partnership is an excellent model of how NNRI collaborations can accelerate the translation of laboratory-based research into clinical trials, ultimately getting successful treatments for rare diseases like inherited retinal degenerations to the market and out to the people who need them.”
Based on the agreement, Oxford BioMedica will receive an upfront payment of $26 million and a further $24 million from sanofi-aventis over a three-year period.
The treatments will utilize Oxford BioMedica’s LentiVector® gene delivery technology to deliver healthy vision-saving genes to the retina. For more information on this technology, visit www.oxfordbiomedica.co.uk/
Monday, December 6, 2010
Drug Therapy To Cure Macular Degeneration
By Administration
Lucentis-is a drug therapy based on the cancer drug Avastin for wet macular degeneration. The treatment involves periodic injection of the drug directly into the eye. A higher percentage of those treated with Lucentis have shown improved vision than with any other treatment. Macugen-is another drug therapy for macular degeneration. It also involves periodic injections directly into the eye. It employs a molecule that attacks a protein involved with the growth of macular degeneration related blood vessels. macular degeneration treatment Vitamins and Minerals-are a treatment that is being used to treat dry macular degeneration. There is evidence to suggest that vitamins and minerals that have antioxidant properties will slow the progression of intermediate dry macular degeneration to the advanced form. The treatment typically involves large doses of Vitamin C, Vitamin E, Beta Carotene and Zinc Oxide.
Share and Enjoy:
Lucentis-is a drug therapy based on the cancer drug Avastin for wet macular degeneration. The treatment involves periodic injection of the drug directly into the eye. A higher percentage of those treated with Lucentis have shown improved vision than with any other treatment. Macugen-is another drug therapy for macular degeneration. It also involves periodic injections directly into the eye. It employs a molecule that attacks a protein involved with the growth of macular degeneration related blood vessels. macular degeneration treatment Vitamins and Minerals-are a treatment that is being used to treat dry macular degeneration. There is evidence to suggest that vitamins and minerals that have antioxidant properties will slow the progression of intermediate dry macular degeneration to the advanced form. The treatment typically involves large doses of Vitamin C, Vitamin E, Beta Carotene and Zinc Oxide.
Share and Enjoy:
Monday, November 15, 2010
Macular Degeneration Treatments/Therapies Breakthroughs
by Isobel Washington
Macular degeneration is an eye condition characterized by the deterioration of the macula, which is the central "lens-like" part of the eye's retina responsible for sharp central vision. Affecting central vision and often leading to vision loss, macular degeneration has had limited treatment options. Recently, there have been some breakthroughs to help patients retain vision.
Significance
Macular degeneration is the leading cause of vision loss and blindness among Americans age 65 and older. Vision loss from this condition is a growing problem, since this age demographic represents an increasingly larger percentage of the U. S. population.
Function
Treatments for macular degeneration work to preserve vision ability at the time of treatment, and slow the progression of the disease (it's a progressive disease that affects vision over time). Treatment cannot restore vision that is already lost through the disease. There is no cure or treatment to stop the progression of macular degeneration, there are ways to preserve and prolong current vision.
Eye Injections
Lucentis and Macugen are FDA-approved ocular injection treatments, and are highly effective for preserving vision and inhibiting macular degeneration symptoms, according to AllAboutVision.com. A 2005 study on Lucentis demonstrated success rate of 95 percent for improving and sustaining vision in macular degeneration patients.
Laser Treatment
Laser technology is now used to destroy the abnormal, leaky blood vessels that cause vision loss in macular degeneration patients. The National Eye Institute points out, however, that while this treatment may be effective for preventing vision loss, it is also comes with the risk of destroying healthy tissue that surrounds the treatment area.
Photodynamic Therapy
This method uses special light treatment to activate an injected drug, verteporfin, in the blood vessels, so that it destroys the new, abnormal blood vessels being hyper-produced in the eye (those that cause vision impairment or loss). The National Eye Institute reports that this light-activation method slows vision loss, but doesn't stop it.
Investigational Treatments
Investigational treatments for macular degeneration, in various stages of research and FDA clinical studies, include Avastin, a cancer treatment drug. As of 2009, the National Eye Institute reports that no available treatment provides a cure for macular degeneration, and that vision loss may result, despite treatment.
About the Author
Isobel Washington has been a freelance journalist since 2007. Washington's work first surfaced in Europe, where she served as a restaurant critic and journalist for "LifeStyles" magazine. Her love of travel and culture inspired her first novel, which is currently underway. Washington has a 10-year career in marketing communication and holds a Bachelor of Science degree.
Macular degeneration is an eye condition characterized by the deterioration of the macula, which is the central "lens-like" part of the eye's retina responsible for sharp central vision. Affecting central vision and often leading to vision loss, macular degeneration has had limited treatment options. Recently, there have been some breakthroughs to help patients retain vision.
Significance
Macular degeneration is the leading cause of vision loss and blindness among Americans age 65 and older. Vision loss from this condition is a growing problem, since this age demographic represents an increasingly larger percentage of the U. S. population.
Function
Treatments for macular degeneration work to preserve vision ability at the time of treatment, and slow the progression of the disease (it's a progressive disease that affects vision over time). Treatment cannot restore vision that is already lost through the disease. There is no cure or treatment to stop the progression of macular degeneration, there are ways to preserve and prolong current vision.
Eye Injections
Lucentis and Macugen are FDA-approved ocular injection treatments, and are highly effective for preserving vision and inhibiting macular degeneration symptoms, according to AllAboutVision.com. A 2005 study on Lucentis demonstrated success rate of 95 percent for improving and sustaining vision in macular degeneration patients.
Laser Treatment
Laser technology is now used to destroy the abnormal, leaky blood vessels that cause vision loss in macular degeneration patients. The National Eye Institute points out, however, that while this treatment may be effective for preventing vision loss, it is also comes with the risk of destroying healthy tissue that surrounds the treatment area.
Photodynamic Therapy
This method uses special light treatment to activate an injected drug, verteporfin, in the blood vessels, so that it destroys the new, abnormal blood vessels being hyper-produced in the eye (those that cause vision impairment or loss). The National Eye Institute reports that this light-activation method slows vision loss, but doesn't stop it.
Investigational Treatments
Investigational treatments for macular degeneration, in various stages of research and FDA clinical studies, include Avastin, a cancer treatment drug. As of 2009, the National Eye Institute reports that no available treatment provides a cure for macular degeneration, and that vision loss may result, despite treatment.
About the Author
Isobel Washington has been a freelance journalist since 2007. Washington's work first surfaced in Europe, where she served as a restaurant critic and journalist for "LifeStyles" magazine. Her love of travel and culture inspired her first novel, which is currently underway. Washington has a 10-year career in marketing communication and holds a Bachelor of Science degree.
Thursday, November 4, 2010
Qualifing Theraputic Discovery Project Program
by GEN news
Over the last couple of days, companies have been reporting on awards received under the Qualifying Therapeutic Discovery Project program. The IRS in conjunction with the Department of Health and Human Services, approved applications for projects that showed significant potential to produce new and cost-saving therapies, support jobs, and increase U.S. competitiveness.
Under the program, a total amount of $1 billion was allocated for credits and grants with a $5 million limit per each eligible applicant. The full list of companies receiving these awards can be found at http://bit.ly/b3VxSp.
Here are details for a few more companies:
Acceleron Pharma received five grants totaling $1,222,396.25: ACE-031 for Duchenne muscular dystrophy, ACE-536 for myelodysplastic syndrome, ACE-435, ACE-011 for anemia, and ACE-041 for advanced solid tumors, multiple myeloma, and age-related macular degeneration.
Aestus Therapeutics received one grant of $244,000: chronic neuropathic pain drug development.
BioCryst Pharmaceuticals received five grants totaling $1,064,297.89: four grants of $244,479.25 each were given to peramivir for influenza, BCX4208 for gout, forodesine for CLL and CTCL, and JAK inhibitor programs in psoriasis, ankylosing spondylitis, and multiple sclerosis. One grant of $86,380.89 was awarded to BCX4161 for hereditary angiodema.
Biodel received five grants totaling $1,222,396.25: Linjeta, VIAtab, smart basal, glucagon, and glargine.
Cardium Therapeutics received one grant of $244,479.25: Generx for advanced coronary artery disease.
Celsion received one grant of $244,479.25: Thermodox for primary liver cancer and recurrent chest wall breast cancer.
Cerus received two grants totaling $488,958.50: Intercept Blood System for platelets and red blood cells.
Charleston Laboratories received one grant of $244,479.25: CL-108 for moderate-to-severe pain.
CorMedix received two grants totaling $488,959.50: Neutrolin and Deferiprone.
Curis received two grants totaling $488,958.50: CUDC-101 and pipeline small molecules for cancer treatment.
Derma Sciences received one grant of $244,479.25: DSC127 for tissue repair.
Dicerna Pharmaceuticals received two grants totaling $488,958.50: Dicer Substrate Technology and DsiRNA molecules for the treatment of cancer.
DNA Medicine Institute received a grant of $222,999: Universal Blood Sensor.
Enzon Pharmaceuticals received five grants totaling $1,222,396.25: PEG-SN38, mRNA antagonist for HIF-1 alpha, Survivin, Androgen Receptor, and HER3.
Etubics received one grant of $244,479.25: CEA-expressing adenovirus as a colon cancer therapeutic vaccine.
GTx received five grants totaling $1,222,396.25: ALK inhibition therapy, Toremifene 20 mg, Ostarine, GTx-758, Toremifene 80 mg, which are all being developed for cancer and cancer supportive care.
Health Discovery received a grant of $244,479.25: SVM and RFE-SVM technology.
Icagen received three grants totaling $733,000: Selective sodium channel drugs to treat chronic pain, KCNQ agonists for epilepsy and pain, and TRPA1 drugs for inflammatory pain.
Inviragen received two grants totaling $488,958.50: Vaccines against dengue and chikungunya viruses.
InVivo Therapeutics received a grant of $244,000: biocompatible polymer scaffolding device designed for implantation into a lesion to treat acute open-wound SCI.
Light Sciences Oncology received two grants totaling $488,958.50: Aptocine for treatment of primary and secondary liver tumors and benign prostatic hyperplasia.
Lipocine received four grants totaling $977,917: hormone replacement therapy, high-risk pregnancy support, oral treatment of progressive glioblastoma multiforme, and opioid-resistant cough in advanced cancer patients.
Molecular Detection received a grant of $244,479.25: Detect-Ready panel that detects carriers of MRSA and related pathogens.
Neoprobe received a grant of $244,479.25: Lymphoseek.
Omeros received eight grants of uneven amounts totaling $1,723,086.51: PDE7 for Parkinson disease; addiction treatment; therapies for osteoarthritis and the protection of articular cartilage; drugs to treat pain, inflammation, and spasm of the urinary tract; MASP-2 MoAb for traumatic injury; medications for schizophrenia; intracameral OMS302 to maintain intraoperative mydriasis and reduce pain and inflammation; and products to improve function and reduce pain after arthroscopic surgery.
OncoMed Pharmaceuticals received five grants totaling $1,222,396.25: OMP-21M18, OMP-59R5, novel antibodies, Wnt pathway inhibitors, and drugs targeting the Wnt pathway in cancer stem cells, all for the treatment of cancer.
PolyMedix received two cash grants totaling $488,958.50: PMX-30063 for acute bacterial skin and skin structure infections (ABSSSI) caused by Staph and PMX-60056 in percutaneous coronary intervention patients.
pSivida received two cash grants totaling $488,958.50: research on new generations of the company’s drug delivery technologies targeting ophthalmic diseases.
Quanterix received three grants totaling $733,437.75: Diagnostics developed on the Single Molecule Array (SiMoA) for prostate cancer, Alzheimer disease, and Crohn disease.
Regulus Therapeutics received two cash grants totaling $488,958.50: miRNA therapeutics for HCV and fibrosis.
Sangamo BioSciences received four grants totaling $977,917: SB-509 for diabetic peripheral neuropathy, SB-509 for amyotrophic lateral sclerosis, SB-728-T for human immunodeficiency virus/acquired immunodeficiency syndrome, and SB-313-xTZ for recurrent or refractory glioblastoma multiforme.
Sea Lane Biotechnologies received six grants totaling $1.5 million: Surrobody™ therapeutic candidates and influenza antibodies.
Soligenix received a grant of $244,479.25: orBec in acute gastrointestinal graft vs. host disease.
Somaxon Pharmaceuticals received a grant of $244,479.25: Silenor.
Spectrum Pharmaceuticals received four grants totaling $977,917: RenaZorb for hyperphosphatemia in patients with chronic kidney disease and anticancer agents Zevalin, Apaziquone, and Belinostat.
Spherix received two grants totaling $469,478.50: triglycerides.
StemCells received four grants totaling $977,917: HuCNS-SC for diseases and disorders affecting the brain, the spinal cord, and the eye as well as hLEC human liver engrafting cells.
Synergenz BioScience received one grant of $94,836: Respiragene, a genetic-based test for lung cancer predisposition.
Telik received five grants totaling $1,222,396.25: Telintra in severe chronic neutropenia, Telcyta for refractory lymphoma and multiple myeloma, Telintra in low-to-intermediate-1 risk myelodysplastic syndrome, Telintra and Revlimid in myelodysplastic syndrome, and aurora and VEGFR kinase inhibitors for the treatment of cancer.
Threshold Pharmaceuticals received two grants totaling $488,958.50: TH-302 for the treatment of cancer, and the company’s hypoxia-activated prodrug technology platform for drug discovery.
Xoft received two grants totaling $469,478.50: electronic brachytherapy for the treatment of breast cancer and gynecological cancers.
Zalicus receive a grant of $244,479.25: Synavive for immunoinflammatory diseases.
Ziopharm Oncology received three grants totaling $733,437.75: Indibulin, Palifosfamide, and Darinaparsin, all for the treatment of cancer.
Over the last couple of days, companies have been reporting on awards received under the Qualifying Therapeutic Discovery Project program. The IRS in conjunction with the Department of Health and Human Services, approved applications for projects that showed significant potential to produce new and cost-saving therapies, support jobs, and increase U.S. competitiveness.
Under the program, a total amount of $1 billion was allocated for credits and grants with a $5 million limit per each eligible applicant. The full list of companies receiving these awards can be found at http://bit.ly/b3VxSp.
Here are details for a few more companies:
Acceleron Pharma received five grants totaling $1,222,396.25: ACE-031 for Duchenne muscular dystrophy, ACE-536 for myelodysplastic syndrome, ACE-435, ACE-011 for anemia, and ACE-041 for advanced solid tumors, multiple myeloma, and age-related macular degeneration.
Aestus Therapeutics received one grant of $244,000: chronic neuropathic pain drug development.
BioCryst Pharmaceuticals received five grants totaling $1,064,297.89: four grants of $244,479.25 each were given to peramivir for influenza, BCX4208 for gout, forodesine for CLL and CTCL, and JAK inhibitor programs in psoriasis, ankylosing spondylitis, and multiple sclerosis. One grant of $86,380.89 was awarded to BCX4161 for hereditary angiodema.
Biodel received five grants totaling $1,222,396.25: Linjeta, VIAtab, smart basal, glucagon, and glargine.
Cardium Therapeutics received one grant of $244,479.25: Generx for advanced coronary artery disease.
Celsion received one grant of $244,479.25: Thermodox for primary liver cancer and recurrent chest wall breast cancer.
Cerus received two grants totaling $488,958.50: Intercept Blood System for platelets and red blood cells.
Charleston Laboratories received one grant of $244,479.25: CL-108 for moderate-to-severe pain.
CorMedix received two grants totaling $488,959.50: Neutrolin and Deferiprone.
Curis received two grants totaling $488,958.50: CUDC-101 and pipeline small molecules for cancer treatment.
Derma Sciences received one grant of $244,479.25: DSC127 for tissue repair.
Dicerna Pharmaceuticals received two grants totaling $488,958.50: Dicer Substrate Technology and DsiRNA molecules for the treatment of cancer.
DNA Medicine Institute received a grant of $222,999: Universal Blood Sensor.
Enzon Pharmaceuticals received five grants totaling $1,222,396.25: PEG-SN38, mRNA antagonist for HIF-1 alpha, Survivin, Androgen Receptor, and HER3.
Etubics received one grant of $244,479.25: CEA-expressing adenovirus as a colon cancer therapeutic vaccine.
GTx received five grants totaling $1,222,396.25: ALK inhibition therapy, Toremifene 20 mg, Ostarine, GTx-758, Toremifene 80 mg, which are all being developed for cancer and cancer supportive care.
Health Discovery received a grant of $244,479.25: SVM and RFE-SVM technology.
Icagen received three grants totaling $733,000: Selective sodium channel drugs to treat chronic pain, KCNQ agonists for epilepsy and pain, and TRPA1 drugs for inflammatory pain.
Inviragen received two grants totaling $488,958.50: Vaccines against dengue and chikungunya viruses.
InVivo Therapeutics received a grant of $244,000: biocompatible polymer scaffolding device designed for implantation into a lesion to treat acute open-wound SCI.
Light Sciences Oncology received two grants totaling $488,958.50: Aptocine for treatment of primary and secondary liver tumors and benign prostatic hyperplasia.
Lipocine received four grants totaling $977,917: hormone replacement therapy, high-risk pregnancy support, oral treatment of progressive glioblastoma multiforme, and opioid-resistant cough in advanced cancer patients.
Molecular Detection received a grant of $244,479.25: Detect-Ready panel that detects carriers of MRSA and related pathogens.
Neoprobe received a grant of $244,479.25: Lymphoseek.
Omeros received eight grants of uneven amounts totaling $1,723,086.51: PDE7 for Parkinson disease; addiction treatment; therapies for osteoarthritis and the protection of articular cartilage; drugs to treat pain, inflammation, and spasm of the urinary tract; MASP-2 MoAb for traumatic injury; medications for schizophrenia; intracameral OMS302 to maintain intraoperative mydriasis and reduce pain and inflammation; and products to improve function and reduce pain after arthroscopic surgery.
OncoMed Pharmaceuticals received five grants totaling $1,222,396.25: OMP-21M18, OMP-59R5, novel antibodies, Wnt pathway inhibitors, and drugs targeting the Wnt pathway in cancer stem cells, all for the treatment of cancer.
PolyMedix received two cash grants totaling $488,958.50: PMX-30063 for acute bacterial skin and skin structure infections (ABSSSI) caused by Staph and PMX-60056 in percutaneous coronary intervention patients.
pSivida received two cash grants totaling $488,958.50: research on new generations of the company’s drug delivery technologies targeting ophthalmic diseases.
Quanterix received three grants totaling $733,437.75: Diagnostics developed on the Single Molecule Array (SiMoA) for prostate cancer, Alzheimer disease, and Crohn disease.
Regulus Therapeutics received two cash grants totaling $488,958.50: miRNA therapeutics for HCV and fibrosis.
Sangamo BioSciences received four grants totaling $977,917: SB-509 for diabetic peripheral neuropathy, SB-509 for amyotrophic lateral sclerosis, SB-728-T for human immunodeficiency virus/acquired immunodeficiency syndrome, and SB-313-xTZ for recurrent or refractory glioblastoma multiforme.
Sea Lane Biotechnologies received six grants totaling $1.5 million: Surrobody™ therapeutic candidates and influenza antibodies.
Soligenix received a grant of $244,479.25: orBec in acute gastrointestinal graft vs. host disease.
Somaxon Pharmaceuticals received a grant of $244,479.25: Silenor.
Spectrum Pharmaceuticals received four grants totaling $977,917: RenaZorb for hyperphosphatemia in patients with chronic kidney disease and anticancer agents Zevalin, Apaziquone, and Belinostat.
Spherix received two grants totaling $469,478.50: triglycerides.
StemCells received four grants totaling $977,917: HuCNS-SC for diseases and disorders affecting the brain, the spinal cord, and the eye as well as hLEC human liver engrafting cells.
Synergenz BioScience received one grant of $94,836: Respiragene, a genetic-based test for lung cancer predisposition.
Telik received five grants totaling $1,222,396.25: Telintra in severe chronic neutropenia, Telcyta for refractory lymphoma and multiple myeloma, Telintra in low-to-intermediate-1 risk myelodysplastic syndrome, Telintra and Revlimid in myelodysplastic syndrome, and aurora and VEGFR kinase inhibitors for the treatment of cancer.
Threshold Pharmaceuticals received two grants totaling $488,958.50: TH-302 for the treatment of cancer, and the company’s hypoxia-activated prodrug technology platform for drug discovery.
Xoft received two grants totaling $469,478.50: electronic brachytherapy for the treatment of breast cancer and gynecological cancers.
Zalicus receive a grant of $244,479.25: Synavive for immunoinflammatory diseases.
Ziopharm Oncology received three grants totaling $733,437.75: Indibulin, Palifosfamide, and Darinaparsin, all for the treatment of cancer.
Saturday, October 30, 2010
Retinal Disease Highlights From the 2010 AAO Meeting
By Dr. Randall Wong
Many of us just returned from the largest ophthalmic “trade show” in the world. The American Academy of Ophthalmology convened in Chicago last week. This meeting was combined with the Middle East Africa Council of Ophthalmology (MEACO). Perhaps 40 K attended the meeting.
I also attended the 2 day retinal subspecialty meeting which preceded the larger AAO meeting. Thus, I had 5 days to expand my knowledge.
Most of the congress was focused on technology, especially electronic medical records. Few discoveries were revealed. This may be for two reasons: there is nothing really new going on right now, and/or, the Internet allows such rapid sharing of information, that it is impossible to “wow” anyone at this meeting. Probably both are true.
With regard to retinal disease, my particular specialty, there is little new, but lots to be excited about.
Avastin and Lucentis continue to be the mainstays of treatment for wet macular degeneration. There is evidence that the two drugs are similar in clinical efficacy…a notion I support. It is likely that these types of drugs will be delivered with a sustained release system, thus, obviating the need for repeated intraocular injections.
Ozurdex is now indicated for the treatment of uveitis. It was originally FDA approved for the treatment of RVO only. By itself, not earth-shattering, but does make sense clinically. Sustained release steroids for chronic intraocular inflammation. Sounds much better.
The highlight of the meeting is the potential for Iluvien to be FDA approved soon. Iluvien is similar to Ozurdex in that both are injectable intraocular sustained release systems. Iluvien will be a sustained release system that delivers intraocular steroids for the treatment of diabetic macular edema. While this is a particularly promising development for patients with diabetic retinopathy, this has larger implications for eye treatment overall.
What Does This Mean? Illuvien is likely to be the second FDA approved intraocular drug delivery system. This will be a significant endorsement of drug delivery to the eye. We are entering a new era of pharmaceutical therapeutics; sustained release inside the eye. For now, we are focused on retinal disease. But soon, very soon, devices will emerge promising better therapeutics for almost any eye condition.
Just think, glaucoma may be treated by such a device.
Many of us just returned from the largest ophthalmic “trade show” in the world. The American Academy of Ophthalmology convened in Chicago last week. This meeting was combined with the Middle East Africa Council of Ophthalmology (MEACO). Perhaps 40 K attended the meeting.
I also attended the 2 day retinal subspecialty meeting which preceded the larger AAO meeting. Thus, I had 5 days to expand my knowledge.
Most of the congress was focused on technology, especially electronic medical records. Few discoveries were revealed. This may be for two reasons: there is nothing really new going on right now, and/or, the Internet allows such rapid sharing of information, that it is impossible to “wow” anyone at this meeting. Probably both are true.
With regard to retinal disease, my particular specialty, there is little new, but lots to be excited about.
Avastin and Lucentis continue to be the mainstays of treatment for wet macular degeneration. There is evidence that the two drugs are similar in clinical efficacy…a notion I support. It is likely that these types of drugs will be delivered with a sustained release system, thus, obviating the need for repeated intraocular injections.
Ozurdex is now indicated for the treatment of uveitis. It was originally FDA approved for the treatment of RVO only. By itself, not earth-shattering, but does make sense clinically. Sustained release steroids for chronic intraocular inflammation. Sounds much better.
The highlight of the meeting is the potential for Iluvien to be FDA approved soon. Iluvien is similar to Ozurdex in that both are injectable intraocular sustained release systems. Iluvien will be a sustained release system that delivers intraocular steroids for the treatment of diabetic macular edema. While this is a particularly promising development for patients with diabetic retinopathy, this has larger implications for eye treatment overall.
What Does This Mean? Illuvien is likely to be the second FDA approved intraocular drug delivery system. This will be a significant endorsement of drug delivery to the eye. We are entering a new era of pharmaceutical therapeutics; sustained release inside the eye. For now, we are focused on retinal disease. But soon, very soon, devices will emerge promising better therapeutics for almost any eye condition.
Just think, glaucoma may be treated by such a device.
Saturday, October 23, 2010
Novartis therapy Lucentis recommended for approval in EU to treat Diabetic Macular Edema
By Thomas Reuters
- CHMP positive opinion supports Lucentis approval in EU for treatment in patients with visual impairment due to diabetic macular edema (DME)
- Pivotal data shows Lucentis provided rapid, superior and sustained vision gains compared to the current standard of care
- Diabetes-associated eye diseases such as DME are a leading cause of blindness in most developed countries in the working-age population
Basel, October 22, 2010 - Novartis has received a positive opinion from the Committee for Medicinal Products for Human Use (CHMP) for Lucentis(R) (ranibizumab) for the treatment of patients with visual impairment due to diabetic macular edema (DME), a leading cause of blindness in the working-age population in most developed countries.
"Lucentis was designed specifically for use in the eye, and its efficacy and safety have now been demonstrated in patients suffering loss of vision due to diabetic macular edema through a robust program of clinical trials," said David Epstein, Division Head of Novartis Pharmaceuticals.
The submission was supported by data from two Novartis-funded clinical trials, RESTORE and RESOLVE, which showed that Lucentis was superior in providing rapid and sustained visual acuity gain versus sham (dummy therapy) or laser therapy, the current standard of care. The RESTORE study showed patients treated with Lucentis alone or with Lucentis plus laser therapy achieved an average 5.9 letters and 5.5 letters gain in visual acuity at 12 months, respectively, compared to laser-treated patients as measured on a standard ETDRS eye chart.
The RESOLVE study showed that Lucentis-treated patients achieved an average 11.7 letters gain in visual acuity at 12 months compared to sham-treated patients, some of whom received laser treatment.
The pivotal data from RESTORE and RESOLVE are further supported by results of an independent US study conducted by the Diabetic Retinopathy Clinical Research Network (DRCR.net), showing that at one year nearly 50% of patients' eyes treated with Lucentis and laser therapy improved their visual acuity by 10 letters or more, compared to 28% with laser alone. In addition, the study demonstrated superior gains in visual acuity among Lucentis-treated patients up to two years.
Lucentis was generally well tolerated in clinical studies, either when given as monotherapy or when combined with laser treatment. Its safety profile was consistent with that previously reported in large controlled clinical trials, and in rigorous monitoring since Lucentis was first approved for wet age-related macular degeneration (AMD). Lucentis is currently licensed in more than 85 countries for the treatment of wet AMD.
Diabetic macular edema (DME) is a consequence of diabetic retinopathy - the most common diabetic eye complication, characterized by changes in the blood vessels of the retina - to the light-sensitive layer at the back of the eye. In patients with DME, leakage from these abnormal blood vessels occurs in the central portion of the retina, called the macula. Because this part of the eye is responsible for sharp central vision, DME can lead to significant visual impairment. Visual impairment due to DME affects approximately 1-3% of patients with diabetes, and DME is a leading cause of blindness in the working-age population in most developed countries.
Lucentis offers an entirely new pharmacological approach to treatment compared to the current standard of care for DME that involves the use of laser burns to stop the capillary leakage and to reduce swelling. Lucentis is an antibody fragment that is injected into the eye and acts by neutralizing vascular endothelial growth factor (VEGF), a protein that is known to increase vascular permeability, resulting in capillary leakage and macular edema in patients with diabetes.
Lucentis was developed by Genentech and Novartis. Genentech has the commercial rights to Lucentis in the United States where Lucentis is also approved for the treatment of macular edema following retinal vein occlusion (RVO). In addition, Genentech is conducting two Phase III studies, RISE and RIDE, in patients with diabetic macular edema. The results are expected in 2011. Novartis has exclusive rights in the rest of the world and plans to file in the European Union for approval of Lucentis for the treatment of visual impairment due to macular edema following RVO.
Disclaimer
The foregoing release contains forward-looking statements that can be identified by terminology such as "recommended," "plans," or similar expressions, or by express or implied discussions regarding potential new indications or labeling for Lucentis or regarding potential future revenues from Lucentis. You should not place undue reliance on these statements. Such forward-looking statements reflect the current views of management regarding future events, and involve known and unknown risks, uncertainties and other factors that may cause actual results with Lucentis to be materially different from any future results, performance or achievements expressed or implied by such statements. There can be no guarantee that Lucentis will be submitted or approved for any additional indications or labeling in any market. Nor can there be any guarantee that Lucentis will achieve any particular levels of revenue in the future. In particular, management's expectations regarding Lucentis could be affected by, among other things, unexpected clinical trial results, including unexpected new clinical data and unexpected additional analysis of existing clinical data; unexpected regulatory actions or delays or government regulation generally; competition in general; government, industry and general public pricing pressures; the company's ability to obtain or maintain patent or other proprietary intellectual property protection; the impact that the foregoing factors could have on the values attributed to the Novartis Group's assets and liabilities as recorded in the Group's consolidated balance sheet, and other risks and factors referred to in Novartis AG's current Form 20-F on file with the US Securities and Exchange Commission. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those anticipated, believed, estimated or expected. Novartis is providing the information in this press release as of this date and does not undertake any obligation to update any forward-looking statements contained in this press release as a result of new information, future events or otherwise.
- CHMP positive opinion supports Lucentis approval in EU for treatment in patients with visual impairment due to diabetic macular edema (DME)
- Pivotal data shows Lucentis provided rapid, superior and sustained vision gains compared to the current standard of care
- Diabetes-associated eye diseases such as DME are a leading cause of blindness in most developed countries in the working-age population
Basel, October 22, 2010 - Novartis has received a positive opinion from the Committee for Medicinal Products for Human Use (CHMP) for Lucentis(R) (ranibizumab) for the treatment of patients with visual impairment due to diabetic macular edema (DME), a leading cause of blindness in the working-age population in most developed countries.
"Lucentis was designed specifically for use in the eye, and its efficacy and safety have now been demonstrated in patients suffering loss of vision due to diabetic macular edema through a robust program of clinical trials," said David Epstein, Division Head of Novartis Pharmaceuticals.
The submission was supported by data from two Novartis-funded clinical trials, RESTORE and RESOLVE, which showed that Lucentis was superior in providing rapid and sustained visual acuity gain versus sham (dummy therapy) or laser therapy, the current standard of care. The RESTORE study showed patients treated with Lucentis alone or with Lucentis plus laser therapy achieved an average 5.9 letters and 5.5 letters gain in visual acuity at 12 months, respectively, compared to laser-treated patients as measured on a standard ETDRS eye chart.
The RESOLVE study showed that Lucentis-treated patients achieved an average 11.7 letters gain in visual acuity at 12 months compared to sham-treated patients, some of whom received laser treatment.
The pivotal data from RESTORE and RESOLVE are further supported by results of an independent US study conducted by the Diabetic Retinopathy Clinical Research Network (DRCR.net), showing that at one year nearly 50% of patients' eyes treated with Lucentis and laser therapy improved their visual acuity by 10 letters or more, compared to 28% with laser alone. In addition, the study demonstrated superior gains in visual acuity among Lucentis-treated patients up to two years.
Lucentis was generally well tolerated in clinical studies, either when given as monotherapy or when combined with laser treatment. Its safety profile was consistent with that previously reported in large controlled clinical trials, and in rigorous monitoring since Lucentis was first approved for wet age-related macular degeneration (AMD). Lucentis is currently licensed in more than 85 countries for the treatment of wet AMD.
Diabetic macular edema (DME) is a consequence of diabetic retinopathy - the most common diabetic eye complication, characterized by changes in the blood vessels of the retina - to the light-sensitive layer at the back of the eye. In patients with DME, leakage from these abnormal blood vessels occurs in the central portion of the retina, called the macula. Because this part of the eye is responsible for sharp central vision, DME can lead to significant visual impairment. Visual impairment due to DME affects approximately 1-3% of patients with diabetes, and DME is a leading cause of blindness in the working-age population in most developed countries.
Lucentis offers an entirely new pharmacological approach to treatment compared to the current standard of care for DME that involves the use of laser burns to stop the capillary leakage and to reduce swelling. Lucentis is an antibody fragment that is injected into the eye and acts by neutralizing vascular endothelial growth factor (VEGF), a protein that is known to increase vascular permeability, resulting in capillary leakage and macular edema in patients with diabetes.
Lucentis was developed by Genentech and Novartis. Genentech has the commercial rights to Lucentis in the United States where Lucentis is also approved for the treatment of macular edema following retinal vein occlusion (RVO). In addition, Genentech is conducting two Phase III studies, RISE and RIDE, in patients with diabetic macular edema. The results are expected in 2011. Novartis has exclusive rights in the rest of the world and plans to file in the European Union for approval of Lucentis for the treatment of visual impairment due to macular edema following RVO.
Disclaimer
The foregoing release contains forward-looking statements that can be identified by terminology such as "recommended," "plans," or similar expressions, or by express or implied discussions regarding potential new indications or labeling for Lucentis or regarding potential future revenues from Lucentis. You should not place undue reliance on these statements. Such forward-looking statements reflect the current views of management regarding future events, and involve known and unknown risks, uncertainties and other factors that may cause actual results with Lucentis to be materially different from any future results, performance or achievements expressed or implied by such statements. There can be no guarantee that Lucentis will be submitted or approved for any additional indications or labeling in any market. Nor can there be any guarantee that Lucentis will achieve any particular levels of revenue in the future. In particular, management's expectations regarding Lucentis could be affected by, among other things, unexpected clinical trial results, including unexpected new clinical data and unexpected additional analysis of existing clinical data; unexpected regulatory actions or delays or government regulation generally; competition in general; government, industry and general public pricing pressures; the company's ability to obtain or maintain patent or other proprietary intellectual property protection; the impact that the foregoing factors could have on the values attributed to the Novartis Group's assets and liabilities as recorded in the Group's consolidated balance sheet, and other risks and factors referred to in Novartis AG's current Form 20-F on file with the US Securities and Exchange Commission. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those anticipated, believed, estimated or expected. Novartis is providing the information in this press release as of this date and does not undertake any obligation to update any forward-looking statements contained in this press release as a result of new information, future events or otherwise.
Labels:
blind,
blindness,
blurry vision,
drusen,
eyes,
low vision,
optics,
research,
treatments,
vision
Sunday, October 17, 2010
Complement inhibition may be the future of dry AMD therapy
CHICAGO — Ongoing clinical trials exploring the use of complement inhibitors for treating nonexudative age-related macular degeneration offer promise for a disease state that has long been considered difficult to treat.
A number of recent studies have implicated the complement immune system in AMD. However, nonexudative AMD remains a "uniquely human disease," and, therefore, no animal model exists in which to prove potential therapeutic strategies, Philip J. Rosenfeld, MD, PhD, said here are Retina Subspecialty day preceding the joint meeting of the American Academy of Ophthalmology and the Middle East Africa Council of Ophthalmology.
As a result, Dr. Rosenfeld said, human trials will prove important in determining whether complement inhibition is of any real clinical benefit.
Several such trials are already underway. Alcon is currently investigating its POT-4 (AL-78898A) anti-C3 cyclic peptide in human trials. There is some evidence that POT-4 may also affect VEGF expression in the retina, Dr. Rosenfeld said.
Separately, Genetech/Roche has an anti-factor D (FCFD4514S) that inhibits the C3 and C5 alternative pathway convertases. Phase 1 studies have been successfully completed with that agent, Dr. Rosenfeld said.
Two separate C5 inhibitors are being studied: Eculizumab/Sollris (Alexion) and ARC1905, an anti-C5 aptamer (Ophthotech).
"One of the advantages is that while you block the downstream activated species, you preserve the more proximal species that are important for the clearance of bacteria, particularly the encapsulated organisms," Dr. Rosenfeld said.
Bookmark and Share
A number of recent studies have implicated the complement immune system in AMD. However, nonexudative AMD remains a "uniquely human disease," and, therefore, no animal model exists in which to prove potential therapeutic strategies, Philip J. Rosenfeld, MD, PhD, said here are Retina Subspecialty day preceding the joint meeting of the American Academy of Ophthalmology and the Middle East Africa Council of Ophthalmology.
As a result, Dr. Rosenfeld said, human trials will prove important in determining whether complement inhibition is of any real clinical benefit.
Several such trials are already underway. Alcon is currently investigating its POT-4 (AL-78898A) anti-C3 cyclic peptide in human trials. There is some evidence that POT-4 may also affect VEGF expression in the retina, Dr. Rosenfeld said.
Separately, Genetech/Roche has an anti-factor D (FCFD4514S) that inhibits the C3 and C5 alternative pathway convertases. Phase 1 studies have been successfully completed with that agent, Dr. Rosenfeld said.
Two separate C5 inhibitors are being studied: Eculizumab/Sollris (Alexion) and ARC1905, an anti-C5 aptamer (Ophthotech).
"One of the advantages is that while you block the downstream activated species, you preserve the more proximal species that are important for the clearance of bacteria, particularly the encapsulated organisms," Dr. Rosenfeld said.
Bookmark and Share
Monday, October 4, 2010
Retinal Degeneration Can be Prevented with Nanotechnology Gene Therapy
Friday, 01 October 2010
Researchers from Tufts University published results from a study showing vision-saving gene therapy to the eyes can be delivered via nanotechnology. A protein called Glial Cell Line-Derived Neurtrophic Factor (GDNF) can protect the eyes from diseases of the retina, such as and retinitis pigmentosa.
The previous method for delivering genetic material with a virus had several problems and side effects. Although the study is in its infancy, and the results are temporary, mice injected with the GDNF carrying nanoparticle had a 3.9 to 7.7-fold reduction in damage to the retina. Seven days after treatment, the GDNF-nanoparticle treated mice had up to 39% better eyesight than mice in the control group.
Two weeks after the treatment, GDNF-nanoparticle-injected mice had nuclear layers of the retina that were almost 24 to over 39 percent thicker than control mice. However, after 14 days, these advantages seem to have vanished. According to Dr. Brett Katzen, "The idea of using gene therapy to help cure - or at least improve - the eyesight of patients with macular degeneration should be exciting to eye doctors everywhere. This is a great first step." The research shows an incredible potential for nanotechnology to develop an effective carrier for delivering gene therapy.
This therapy can then lead to a new generation of treatments for retinal diseases. Age-related macular degeneration is the leading cause of blindness in Americans over the age of 65.
Researchers from Tufts University published results from a study showing vision-saving gene therapy to the eyes can be delivered via nanotechnology. A protein called Glial Cell Line-Derived Neurtrophic Factor (GDNF) can protect the eyes from diseases of the retina, such as and retinitis pigmentosa.
The previous method for delivering genetic material with a virus had several problems and side effects. Although the study is in its infancy, and the results are temporary, mice injected with the GDNF carrying nanoparticle had a 3.9 to 7.7-fold reduction in damage to the retina. Seven days after treatment, the GDNF-nanoparticle treated mice had up to 39% better eyesight than mice in the control group.
Two weeks after the treatment, GDNF-nanoparticle-injected mice had nuclear layers of the retina that were almost 24 to over 39 percent thicker than control mice. However, after 14 days, these advantages seem to have vanished. According to Dr. Brett Katzen, "The idea of using gene therapy to help cure - or at least improve - the eyesight of patients with macular degeneration should be exciting to eye doctors everywhere. This is a great first step." The research shows an incredible potential for nanotechnology to develop an effective carrier for delivering gene therapy.
This therapy can then lead to a new generation of treatments for retinal diseases. Age-related macular degeneration is the leading cause of blindness in Americans over the age of 65.
Labels:
age related macular degeneration,
blind,
blindness,
eyes,
macular degeneration,
research,
see,
sight,
treatments,
vision
Saturday, September 18, 2010
Glaucoma eye drops showing some effect against Macular Degeneration
by Dr. Edward Paul
Eye redness was the clue that something was happening to Celia Ramirez's vision. Although she wasn't having trouble driving or doing other tasks, her children urged her to have a checkup. It turned out she was in the early stages of age-related macular degeneration (AMD), a disease that attacks a person's central field of vision.
Mrs. Ramirez, who lives in the Rio Grande Valley, had surgery that successfully controlled her eye pressure, but her central vision continued to degrade.Eye specialist William Sponsel, Ph.D., associate professor and director of research at the Department of Ophthalmology at the University of Texas Health Science Center at San Antonio (UTHSC).Found a treatment with a new combination of drugs.
The miracle is the carbon dioxide, which is crucial for vision. The healthy eye produces enough carbon dioxide to dilate blood vessels around the retina and maintain proper blood flow. The ailing eye does not produce enough. This holds important implications for the treatment of patients with blinding eye diseases such as AMD and glaucoma, which are marked by diminished circulation of blood in the back of the eye. Eye pressure also is a conventional barometer of eye health.
About 60 of 65 patients have seen their vision improve while receiving treatment at UTHSC's teaching hospital, University Hospital. "The patients are receiving combination drug therapy, including agents that trick the eye into retaining more of its carbon dioxide," Dr. Sponsel said. "We have patients with glaucoma and no AMD, patients with AMD and no glaucoma, and patients with both disorders. All appear to demonstrate benefit in the central visual area, regardless of the cause of that visual loss."
The Health Science Center is the first medical center to initiate this combination therapy for patients with central visual loss, Dr. Sponsel said. Considerable research yielded the conclusions that now help patients. "You don't expect these patients to get better, you expect them to get worse," he said. "We have seen dramatic results that bode well for treatment of these disorders in the future."
The researchers measure patients' sensitivity to light on visual function tests. An increase of 10 points represents more than a million-fold increase in actual visual acuity. Mrs. Ramirez's vision in the macula -- the central visual area that enables perception of letters and colors -- was scored as virtually zero on early tests. After the recent treatment, her score is now 24.
The miracle agents are called "carbonic anhydrase inhibitors" (CAI's). Given as eye drops, CAI's reach the back of the eye rapidly and slow the clearance of carbon dioxide while increasing the supply of nutrients. They help dilate blood vessels within and behind the retina, which is the structure that receives, processes and transmits visual images relayed from the brain.
Dr. Sponsel pursued this line of research in an intriguing way -- after discovering that adults who hyperventilated and rapidly blew off their body's carbon dioxide showed decreased vision, eye pressure and circulation in the back of the eye. He was treating subjects one week with a CAI called dorzolamide and the next week with placebo eye drops. During hyperventilation, the subjects on dorzolamide maintained good light sensitivity in their central field of vision, while the same subjects during placebo treatment showed central visual loss. Dr. Sponsel holds two U.S. patents on this work. One valuable aspect of the research is that it proves increased eye pressure is not necessarily the definitive indicator of eye vessel disease.
Eye redness was the clue that something was happening to Celia Ramirez's vision. Although she wasn't having trouble driving or doing other tasks, her children urged her to have a checkup. It turned out she was in the early stages of age-related macular degeneration (AMD), a disease that attacks a person's central field of vision.
Mrs. Ramirez, who lives in the Rio Grande Valley, had surgery that successfully controlled her eye pressure, but her central vision continued to degrade.Eye specialist William Sponsel, Ph.D., associate professor and director of research at the Department of Ophthalmology at the University of Texas Health Science Center at San Antonio (UTHSC).Found a treatment with a new combination of drugs.
The miracle is the carbon dioxide, which is crucial for vision. The healthy eye produces enough carbon dioxide to dilate blood vessels around the retina and maintain proper blood flow. The ailing eye does not produce enough. This holds important implications for the treatment of patients with blinding eye diseases such as AMD and glaucoma, which are marked by diminished circulation of blood in the back of the eye. Eye pressure also is a conventional barometer of eye health.
About 60 of 65 patients have seen their vision improve while receiving treatment at UTHSC's teaching hospital, University Hospital. "The patients are receiving combination drug therapy, including agents that trick the eye into retaining more of its carbon dioxide," Dr. Sponsel said. "We have patients with glaucoma and no AMD, patients with AMD and no glaucoma, and patients with both disorders. All appear to demonstrate benefit in the central visual area, regardless of the cause of that visual loss."
The Health Science Center is the first medical center to initiate this combination therapy for patients with central visual loss, Dr. Sponsel said. Considerable research yielded the conclusions that now help patients. "You don't expect these patients to get better, you expect them to get worse," he said. "We have seen dramatic results that bode well for treatment of these disorders in the future."
The researchers measure patients' sensitivity to light on visual function tests. An increase of 10 points represents more than a million-fold increase in actual visual acuity. Mrs. Ramirez's vision in the macula -- the central visual area that enables perception of letters and colors -- was scored as virtually zero on early tests. After the recent treatment, her score is now 24.
The miracle agents are called "carbonic anhydrase inhibitors" (CAI's). Given as eye drops, CAI's reach the back of the eye rapidly and slow the clearance of carbon dioxide while increasing the supply of nutrients. They help dilate blood vessels within and behind the retina, which is the structure that receives, processes and transmits visual images relayed from the brain.
Dr. Sponsel pursued this line of research in an intriguing way -- after discovering that adults who hyperventilated and rapidly blew off their body's carbon dioxide showed decreased vision, eye pressure and circulation in the back of the eye. He was treating subjects one week with a CAI called dorzolamide and the next week with placebo eye drops. During hyperventilation, the subjects on dorzolamide maintained good light sensitivity in their central field of vision, while the same subjects during placebo treatment showed central visual loss. Dr. Sponsel holds two U.S. patents on this work. One valuable aspect of the research is that it proves increased eye pressure is not necessarily the definitive indicator of eye vessel disease.
Monday, September 13, 2010
Macular Degeneration and your eyesight
You have most probably heard of this very common condition that damages your eyesight as you age. Because this condition affects more elderly people it is often referred to as age-related macular degeneration. Unfortunately there is no cure available for this condition however there are treatments that can help. This blog outlines the latest in research and treatments regarding macular degeneration and aims to help you make the most out of your eyesight in the mean time.
Now macular degeneration as the name implies affects the macula, which is an area right at the back of the eye on a structure that detects light known as the retina. Your macula is the part of the retina that allows you to see things in great detail. In fact many birds have better maculas than us, as they need to see things in great detail from up in the air. The condition of macula degeneration implies that the macula is damaged and as this damage becomes more extensive your eyesight will be affected. There are two types of macula degeneration and they are known as the wet or the dry type, the most common of the two is ‘dry’ maculae degeneration. In this type you get little yellow patches that pop up around your macula and your vision slowly worsens. In ‘wet’ macula degeneration there are tiny blood vessels in the back of your eye that grow and then leak out blood and other fluid. This tends to make ones vision worse more quickly and you should note that dry degeneration can turn into the wet kind.
Those who present with this condition for the most part have difficulty reading, making out fine detail and even have trouble recognizing friends and families faces. After a few years of having this condition things that are in the middle of your vision will begin to look blurred and you may struggle to make things out. After a while the middle of your vision may just appear black and you often cant see anything in this area, this means that you will be unable to see things that are right in front of you. However your peripheral vision will not be affected.
There are things that you can do to cope with this condition as well as medicines that can help. Your doctor may teach you how to make better use of your peripheral vision and tell you that using bright lighting in your home will help you see better. You may also need to make text on the computer screen bigger and use magnifying glasses when reading a book. Most of the medical treatments are aimed at the treatment of wet macular degeneration and in fact there are not many effective treatments for the dry variety. Laser therapy can be used to stop the macular degeneration from getting worse in the sense that these lasers burn away those yellow patches that form around the macular early in the disease course. Also there is no need to worry as laser therapy is not painful and is quite quick, however the evidence supporting this form of treatment is not great at this stage. In fact some research suggests that laser treatment can cause new blood vessels to from on the back of the eye that can make your sight worse.
Mineral and vitamin supplements may be useful in slowing down or stopping macula degeneration from occurring. You should take zinc, vitamin E and C as well as beta-carotene. Remember here that you will need to take them for a long time and in high doses to be affective and remember that these are not without their side effects. Some people find that they have problems with passing urine, others complain of stomach pains and some people notice that their skin turns a little yellow. If this is that case with you then you should stop taking the tablets and visit your doctor.
Wet macular degeneration can be treated with photodynamic laser surgery whereby a dye that is sensitive to light is injected into your bloodstream and then a laser is shone into your eye. The dye that was injected into the blood helps the laser to destroy all of those leaky blood vessels that are damaging your eye. This method has mixed reviews on effectiveness and one should have a good discussion with their doctor regarding the risks and benefits of this procedure before having it done.
There is another type of laser that can be used to destroy the blood vessels in the eye that leak, but this is only affective in a few people with very severe disease. There is a chance with this procedure that the blood vessels will grow back anyway and the laser can sometimes damage the eye. Radiotherapy is another option but lacks suitable research to say whether or not it works and we always worry that radiation may damage other parts of the eye.
There is an injection that you can have in your eyeball called pegaptanib, however for obvious reasons not many people like the idea of this if they can help it. Also you have to have two injections every month and the evidence is not great that it works wonders, although there are some convincing studies. There is another injection called ranibizumab that you get in your eyeball and this also does not have great results but is indicated in people with wet macular degeneration that is getting worse.
So the most important thing is what will happen to you and in this case the outcome is not fantastic. Over many years your vision will gradually get worse and it will be much worse in the centre of your vision than in the peripheries and you are unlikely to go completely blind. Unfortunately we don’t know how quickly things will turn bad and each patient is different, but most people manage to get around even with severe disease as they are able to use their peripheral vision much more effectively.
Now macular degeneration as the name implies affects the macula, which is an area right at the back of the eye on a structure that detects light known as the retina. Your macula is the part of the retina that allows you to see things in great detail. In fact many birds have better maculas than us, as they need to see things in great detail from up in the air. The condition of macula degeneration implies that the macula is damaged and as this damage becomes more extensive your eyesight will be affected. There are two types of macula degeneration and they are known as the wet or the dry type, the most common of the two is ‘dry’ maculae degeneration. In this type you get little yellow patches that pop up around your macula and your vision slowly worsens. In ‘wet’ macula degeneration there are tiny blood vessels in the back of your eye that grow and then leak out blood and other fluid. This tends to make ones vision worse more quickly and you should note that dry degeneration can turn into the wet kind.
Those who present with this condition for the most part have difficulty reading, making out fine detail and even have trouble recognizing friends and families faces. After a few years of having this condition things that are in the middle of your vision will begin to look blurred and you may struggle to make things out. After a while the middle of your vision may just appear black and you often cant see anything in this area, this means that you will be unable to see things that are right in front of you. However your peripheral vision will not be affected.
There are things that you can do to cope with this condition as well as medicines that can help. Your doctor may teach you how to make better use of your peripheral vision and tell you that using bright lighting in your home will help you see better. You may also need to make text on the computer screen bigger and use magnifying glasses when reading a book. Most of the medical treatments are aimed at the treatment of wet macular degeneration and in fact there are not many effective treatments for the dry variety. Laser therapy can be used to stop the macular degeneration from getting worse in the sense that these lasers burn away those yellow patches that form around the macular early in the disease course. Also there is no need to worry as laser therapy is not painful and is quite quick, however the evidence supporting this form of treatment is not great at this stage. In fact some research suggests that laser treatment can cause new blood vessels to from on the back of the eye that can make your sight worse.
Mineral and vitamin supplements may be useful in slowing down or stopping macula degeneration from occurring. You should take zinc, vitamin E and C as well as beta-carotene. Remember here that you will need to take them for a long time and in high doses to be affective and remember that these are not without their side effects. Some people find that they have problems with passing urine, others complain of stomach pains and some people notice that their skin turns a little yellow. If this is that case with you then you should stop taking the tablets and visit your doctor.
Wet macular degeneration can be treated with photodynamic laser surgery whereby a dye that is sensitive to light is injected into your bloodstream and then a laser is shone into your eye. The dye that was injected into the blood helps the laser to destroy all of those leaky blood vessels that are damaging your eye. This method has mixed reviews on effectiveness and one should have a good discussion with their doctor regarding the risks and benefits of this procedure before having it done.
There is another type of laser that can be used to destroy the blood vessels in the eye that leak, but this is only affective in a few people with very severe disease. There is a chance with this procedure that the blood vessels will grow back anyway and the laser can sometimes damage the eye. Radiotherapy is another option but lacks suitable research to say whether or not it works and we always worry that radiation may damage other parts of the eye.
There is an injection that you can have in your eyeball called pegaptanib, however for obvious reasons not many people like the idea of this if they can help it. Also you have to have two injections every month and the evidence is not great that it works wonders, although there are some convincing studies. There is another injection called ranibizumab that you get in your eyeball and this also does not have great results but is indicated in people with wet macular degeneration that is getting worse.
So the most important thing is what will happen to you and in this case the outcome is not fantastic. Over many years your vision will gradually get worse and it will be much worse in the centre of your vision than in the peripheries and you are unlikely to go completely blind. Unfortunately we don’t know how quickly things will turn bad and each patient is different, but most people manage to get around even with severe disease as they are able to use their peripheral vision much more effectively.
Monday, August 23, 2010
Gene therapy can correct inherited retinal eye diseases
Researchers at the American Academy of Ophthalmology have found that Leber’s congenital Amaurosis (LCA), a very severe form of retinal disease
can be improved with the help of gene therapy.
Not only that, but the improvements were also found to be stable for two years.
Gene Therapy Can Correct Retinal Eye Diseases: LCA can be diagnosed in children at a very early age, sometimes even at infancy.
The main symptoms
of LCA are severity in vision loss and nystagmus(involuntary eye movement). By the time a person reaches his thirties or forties LCA develops into blindness.
* The impact of gene therapy could mainly be observed in children. The visual acuity and light sensitivity was tremendous in these children.
* Not only in children, researchers were also able to observe improvement in adults.
The Research and Theory: LCA is due to the mutations caused in any of the 13 genes in our body. Researchers were studying a Type 2 LCA which is due to mutation in the RPE65 gene.
* The doctors injected a normal functioning RPE65 gene which was joined with a virus into the sub-retinal space upon performing a surgery.
* The altered virus places the normally functioning RPE65 gene into the diseased cells and modifies the defective enzymes.
* After 2 weeks from the date of surgery, doctors observed that the patients reported an improvement in vision even in dim light.
* There were a few patients who also said that their visual acuity improved.
* A few even experienced massive improvement in nystagmus.
* The most encouraging result was that none of the patients experienced adverse effects.
Gene therapy does not improve sight on a permanent basis. But, gene therapy can correct inherited retinal eye diseases and help people restore sight.
People who undergo gene therapy need not be classified as blind any more. Researchers are trying hard to implement this technique in a safer way in younger children.
can be improved with the help of gene therapy.
Not only that, but the improvements were also found to be stable for two years.
Gene Therapy Can Correct Retinal Eye Diseases: LCA can be diagnosed in children at a very early age, sometimes even at infancy.
The main symptoms
of LCA are severity in vision loss and nystagmus(involuntary eye movement). By the time a person reaches his thirties or forties LCA develops into blindness.
* The impact of gene therapy could mainly be observed in children. The visual acuity and light sensitivity was tremendous in these children.
* Not only in children, researchers were also able to observe improvement in adults.
The Research and Theory: LCA is due to the mutations caused in any of the 13 genes in our body. Researchers were studying a Type 2 LCA which is due to mutation in the RPE65 gene.
* The doctors injected a normal functioning RPE65 gene which was joined with a virus into the sub-retinal space upon performing a surgery.
* The altered virus places the normally functioning RPE65 gene into the diseased cells and modifies the defective enzymes.
* After 2 weeks from the date of surgery, doctors observed that the patients reported an improvement in vision even in dim light.
* There were a few patients who also said that their visual acuity improved.
* A few even experienced massive improvement in nystagmus.
* The most encouraging result was that none of the patients experienced adverse effects.
Gene therapy does not improve sight on a permanent basis. But, gene therapy can correct inherited retinal eye diseases and help people restore sight.
People who undergo gene therapy need not be classified as blind any more. Researchers are trying hard to implement this technique in a safer way in younger children.
Tuesday, July 20, 2010
Stem Cell Transplants Stalled Blindness in Rats
Researchers say putting nerve stem cells from StemCells Inc near the retinas of rats with a form of macular degeneration helped keep the disease from advancing to blindness for several months.Nerve stem cell transplants may help slow the progression of macular degeneration, the most common cause of blindness in the developed world, U.S. researchers said on Monday.
They said putting nerve stem cells from StemCells Inc near the retinas of rats with a form of macular degeneration helped keep the disease from advancing to blindness for several months.
"These cells improve the chemical environment in the back of the eye," said Ray Lund of the Casey Eye Institute at Oregon Health & Science University in Portland, whose findings were presented at the Society for Neuroscience meeting in Chicago.
Lund said the mechanism is not clear, but he suspects that when immature nerve cells are placed near the retina, they produce growth factors that protect the cells from damage by the disease.
"It's basically a chemical pump that is sitting in the right place and producing the right things," Lund said in a telephone interview.
Where normally animals with eye disease lost their vision by three months old, rats that got the transplants kept their vision for at least seven months, he said.
"There is no evidence that they (the transplanted cells) do any damage," Lund said, adding that the animals do not develop tumors, a key worry for stem cell transplants.
The findings raise hope for use of the treatment in humans with a range of diseases in which the retina become damaged, including age-related macular degeneration or AMD, which affects nearly 30 million people worldwide, including 15 million Americans.
People with AMD lose central vision when delicate light-sensing cells of the macula, a region at the center of the retina, become damaged.
In the rats, the researchers transplanted immature nerve cells into the space near the retina. Lund said the same could be done in people with retinal disease.
Dr. Stephen Huhn, head of the Central Nervous System research program at StemCells Inc, said the cells are adult neural stem cells. He said they are multipotent, meaning they can morph into different types of nerve cells.
The company has already tested the treatment in a study of six patients with Batten's disease, a fatal inherited disorder of the nervous system.
"Having a cell that has already entered clinical testing that has been well tolerated at very high doses in the brain gives us a lot of confidence about exploring the same type of strategy in the eye," Huhn said.
Huhn said he thinks the cells may be especially well suited for use in the retina, brain and spinal cord, which are less likely to reject the cells than other parts of the body.
Ultimately, he said the hope is to develop a treatment for the dry form of macular degeneration, which affects around 90 percent of patients diagnosed with AMD. No treatments are available for this form of the disease.
Huhn said treating this form of the disease may prevent some people from developing wet AMD, in which tiny new blood vessels grow between the retina and the back of the eye.
This form of the disease can be treated with modern drugs like Lucentis, from Novartis and Roche's Genentech, and Pfizer's Macugen.
They said putting nerve stem cells from StemCells Inc near the retinas of rats with a form of macular degeneration helped keep the disease from advancing to blindness for several months.
"These cells improve the chemical environment in the back of the eye," said Ray Lund of the Casey Eye Institute at Oregon Health & Science University in Portland, whose findings were presented at the Society for Neuroscience meeting in Chicago.
Lund said the mechanism is not clear, but he suspects that when immature nerve cells are placed near the retina, they produce growth factors that protect the cells from damage by the disease.
"It's basically a chemical pump that is sitting in the right place and producing the right things," Lund said in a telephone interview.
Where normally animals with eye disease lost their vision by three months old, rats that got the transplants kept their vision for at least seven months, he said.
"There is no evidence that they (the transplanted cells) do any damage," Lund said, adding that the animals do not develop tumors, a key worry for stem cell transplants.
The findings raise hope for use of the treatment in humans with a range of diseases in which the retina become damaged, including age-related macular degeneration or AMD, which affects nearly 30 million people worldwide, including 15 million Americans.
People with AMD lose central vision when delicate light-sensing cells of the macula, a region at the center of the retina, become damaged.
In the rats, the researchers transplanted immature nerve cells into the space near the retina. Lund said the same could be done in people with retinal disease.
Dr. Stephen Huhn, head of the Central Nervous System research program at StemCells Inc, said the cells are adult neural stem cells. He said they are multipotent, meaning they can morph into different types of nerve cells.
The company has already tested the treatment in a study of six patients with Batten's disease, a fatal inherited disorder of the nervous system.
"Having a cell that has already entered clinical testing that has been well tolerated at very high doses in the brain gives us a lot of confidence about exploring the same type of strategy in the eye," Huhn said.
Huhn said he thinks the cells may be especially well suited for use in the retina, brain and spinal cord, which are less likely to reject the cells than other parts of the body.
Ultimately, he said the hope is to develop a treatment for the dry form of macular degeneration, which affects around 90 percent of patients diagnosed with AMD. No treatments are available for this form of the disease.
Huhn said treating this form of the disease may prevent some people from developing wet AMD, in which tiny new blood vessels grow between the retina and the back of the eye.
This form of the disease can be treated with modern drugs like Lucentis, from Novartis and Roche's Genentech, and Pfizer's Macugen.
Wednesday, June 30, 2010
Stem cell Therapy to Benefit Blind
Submitted by Jayden Roberts on Tue, 06/29/2010
Italian researchers have reported that about 12 people have regained their sight in a successful experiment conducted with some partly blind and severe eye damage suffering people. This was revealed in a study published online in the New England Journal of Medicine.
This is a remarkable success that will encourage the cell-therapy, which is done by transplanting cells from one’s own body to other parts. It has been claimed that the treatment has proved winning in 82 of 107 eyes. Also, it was partially complete in 14 others eyes. The benefits of the treatment are expected to last till 10 years after the process.
It is also noticeable that one man, who had been blind for more than five decades, have also completely restored his visual capacity. Appreciating the success, Ophthalmologist Ivan Schwab of the University of California praised and congratulated the team.
If the stem cell transplants become popular and are implemented even more, they can also prove helpful for the people who are affected by chemical burns on their corneas from heavy-duty cleansers and other chemicals. This will be a great help for people who have to suffer eyesight loss due to such mishaps.
However, the stem cell approach is not capable to treat optic nerve or macular degeneration, which is caused due to the damage in retina, as the treatment requires a few healthy tissues that can be transplanted.
Italian researchers have reported that about 12 people have regained their sight in a successful experiment conducted with some partly blind and severe eye damage suffering people. This was revealed in a study published online in the New England Journal of Medicine.
This is a remarkable success that will encourage the cell-therapy, which is done by transplanting cells from one’s own body to other parts. It has been claimed that the treatment has proved winning in 82 of 107 eyes. Also, it was partially complete in 14 others eyes. The benefits of the treatment are expected to last till 10 years after the process.
It is also noticeable that one man, who had been blind for more than five decades, have also completely restored his visual capacity. Appreciating the success, Ophthalmologist Ivan Schwab of the University of California praised and congratulated the team.
If the stem cell transplants become popular and are implemented even more, they can also prove helpful for the people who are affected by chemical burns on their corneas from heavy-duty cleansers and other chemicals. This will be a great help for people who have to suffer eyesight loss due to such mishaps.
However, the stem cell approach is not capable to treat optic nerve or macular degeneration, which is caused due to the damage in retina, as the treatment requires a few healthy tissues that can be transplanted.
Sunday, May 10, 2009
Foundation Fighting Blindness’ National Neurovision Research Institute Heralds Collaboration for Gene Therapy Advancements
Foundation Fighting Blindness’ National Neurovision Research Institute Heralds Collaboration for Gene Therapy Advancements
OWINGS MILLS, Md.--(BUSINESS WIRE)--The National Neurovision Research Institute (NNRI), the Foundation Fighting Blindness’ clinical trial support organization, announced today that one of its key partners, biopharmaceutical company Oxford BioMedica, has established a collaboration with sanofi-aventis, a major international pharmaceutical company, to develop and commercialize gene therapy treatments for vision-robbing retinal degenerative diseases that affect tens of millions of people around the world.
The collaboration will significantly bolster the development of the following gene therapy products: StarGen™ for the treatment of Stargardt disease, a form of early-onset macular degeneration; UshStat™ for the treatment of Usher syndrome, the leading cause of deaf-blindness; RetinoStat® for the treatment of age-related macular degeneration, the leading cause vision loss in people 55 and older in developed countries; and EncorStat™ for corneal graft rejection.
The development of treatments for these and other retinal degenerative diseases is a key goal of the National Neurovision Research Institute and is the basis for its partnership with Oxford BioMedica. In 2006, Paul and Diane Manning, with the National Neurovision Research Institute, established a partnership with Oxford BioMedica to advance gene therapies for these and other related retinal degenerative diseases.
“The investment from sanofi-aventis is a wonderful boost for the development of Oxford BioMedica’s gene therapy products and will greatly enhance our ability to move these emerging treatments into and through the clinical trial process,” says Stephen Rose, Ph.D., chief research officer, Foundation Fighting Blindness. “This collaboration affirms the great potential for gene therapy to treat and cure a number of retinal degenerative diseases including Stargardt disease and Usher syndrome that, as rare diseases, often do not receive the attention or investment necessary to bring about promising treatments.”
“An important goal of the Foundation, through NNRI, is to attract investment from large pharmaceutical companies for the development and production of treatments for inherited retinal disease,” says Morton Goldberg, M.D., chairman of the board of NNRI. “The NNRI-Oxford partnership is an excellent model of how NNRI collaborations can accelerate the translation of laboratory-based research into clinical trials, ultimately getting successful treatments for rare diseases like inherited retinal degenerations to the market and out to the people who need them.”
Based on the agreement, Oxford BioMedica will receive approximately €43 million ($56 million) from sanofi-aventis over a three-year period. Oxford BioMedica is eligible to receive additional fees if development efforts are successful.
The treatments will utilize Oxford BioMedica’s LentiVector® gene delivery technology to deliver healthy vision-saving genes to the retina.
About Foundation Fighting Blindness
The Foundation Fighting Blindness is the largest source of non-governmental funding for retinal degenerative disease research in the world. The urgent mission of the Foundation Fighting Blindness is to drive the research that will provide preventions, treatments and cures for people affected by retinitis pigmentosa, macular degeneration, Usher syndrome, and the entire spectrum of retinal degenerative diseases. The Foundation has invested over $140 million to provide seed money for scientific research of diseases of the retina, which cause blindness. Further information is available at www.FightBlindness.org.
About National Neurovision Research Institute (NNRI)
NNRI is a recently-established non-profit support organization of the Foundation Fighting Blindness (FFB), the leading non-government funding source for inherited orphan retinal degeneration research. The mission of NNRI is to accelerate the translation of laboratory based research into clinical trials for treatments and cures of retinal degenerative diseases. It is a medical research institute that obtains support from government agencies, corporations and private foundations. It may also receive royalties or licensing fees from the drug discovery processes and commercialization of new therapies. Further information is available at www.nnri.info.
OWINGS MILLS, Md.--(BUSINESS WIRE)--The National Neurovision Research Institute (NNRI), the Foundation Fighting Blindness’ clinical trial support organization, announced today that one of its key partners, biopharmaceutical company Oxford BioMedica, has established a collaboration with sanofi-aventis, a major international pharmaceutical company, to develop and commercialize gene therapy treatments for vision-robbing retinal degenerative diseases that affect tens of millions of people around the world.
The collaboration will significantly bolster the development of the following gene therapy products: StarGen™ for the treatment of Stargardt disease, a form of early-onset macular degeneration; UshStat™ for the treatment of Usher syndrome, the leading cause of deaf-blindness; RetinoStat® for the treatment of age-related macular degeneration, the leading cause vision loss in people 55 and older in developed countries; and EncorStat™ for corneal graft rejection.
The development of treatments for these and other retinal degenerative diseases is a key goal of the National Neurovision Research Institute and is the basis for its partnership with Oxford BioMedica. In 2006, Paul and Diane Manning, with the National Neurovision Research Institute, established a partnership with Oxford BioMedica to advance gene therapies for these and other related retinal degenerative diseases.
“The investment from sanofi-aventis is a wonderful boost for the development of Oxford BioMedica’s gene therapy products and will greatly enhance our ability to move these emerging treatments into and through the clinical trial process,” says Stephen Rose, Ph.D., chief research officer, Foundation Fighting Blindness. “This collaboration affirms the great potential for gene therapy to treat and cure a number of retinal degenerative diseases including Stargardt disease and Usher syndrome that, as rare diseases, often do not receive the attention or investment necessary to bring about promising treatments.”
“An important goal of the Foundation, through NNRI, is to attract investment from large pharmaceutical companies for the development and production of treatments for inherited retinal disease,” says Morton Goldberg, M.D., chairman of the board of NNRI. “The NNRI-Oxford partnership is an excellent model of how NNRI collaborations can accelerate the translation of laboratory-based research into clinical trials, ultimately getting successful treatments for rare diseases like inherited retinal degenerations to the market and out to the people who need them.”
Based on the agreement, Oxford BioMedica will receive approximately €43 million ($56 million) from sanofi-aventis over a three-year period. Oxford BioMedica is eligible to receive additional fees if development efforts are successful.
The treatments will utilize Oxford BioMedica’s LentiVector® gene delivery technology to deliver healthy vision-saving genes to the retina.
About Foundation Fighting Blindness
The Foundation Fighting Blindness is the largest source of non-governmental funding for retinal degenerative disease research in the world. The urgent mission of the Foundation Fighting Blindness is to drive the research that will provide preventions, treatments and cures for people affected by retinitis pigmentosa, macular degeneration, Usher syndrome, and the entire spectrum of retinal degenerative diseases. The Foundation has invested over $140 million to provide seed money for scientific research of diseases of the retina, which cause blindness. Further information is available at www.FightBlindness.org.
About National Neurovision Research Institute (NNRI)
NNRI is a recently-established non-profit support organization of the Foundation Fighting Blindness (FFB), the leading non-government funding source for inherited orphan retinal degeneration research. The mission of NNRI is to accelerate the translation of laboratory based research into clinical trials for treatments and cures of retinal degenerative diseases. It is a medical research institute that obtains support from government agencies, corporations and private foundations. It may also receive royalties or licensing fees from the drug discovery processes and commercialization of new therapies. Further information is available at www.nnri.info.
Sunday, May 3, 2009
Tufts Medical Center Researchers Create a New Predictive Model for Age-related Macular Degeneration (AMD)
Tufts Medical Center Researchers Create a New Predictive Model for Age-related Macular Degeneration (AMD)
BOSTON, April 23 /PRNewswire-USNewswire/ -- Researchers at Tufts Medical Center have created a formula for predicting how likely it is that individuals with certain genetic profiles and lifestyle behaviors will develop advanced Age-related Macular Degeneration (AMD), a potentially blinding condition that currently affects an estimated two million older Americans and is increasing dramatically as the population ages.
The study, led by Johanna M. Seddon, MD, ScM, Professor of Ophthalmology at Tufts University School of Medicine and Director of the Ophthalmic Epidemiology and Genetics Service at Tufts Medical Center, evaluated six genotypes that either increase or decrease risk for AMD. In addition to age, sex, and education, she also incorporated smoking status and higher body mass index (BMI) which increase risk of AMD, and supplementation with a high-dose formulation of antioxidants and zinc which delays progression of the disease. Using their new algorithm, Dr. Seddon and her colleagues determined that several genotypes plus the lifestyle factors can predict progression to the advanced forms of AMD with a certainty as high as 83%. The paper, "Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables" was published in the May issue of the journal Investigative Ophthalmology & Visual Science.
Their research also shows that although AMD has a strong genetic component, healthy behaviors can modify your genetic susceptibility. For example, among individuals with one genotype, the homozygous C3 risk genotype, the likelihood of progression to the advanced form of AMD increased from about three-fold for nonsmokers to nearly 10-fold for smokers.
"Our algorithm could help with the selection of study participants for treatment trials and could one day enable doctors to choose the most efficacious treatment for individual patients," Dr. Seddon said. "It also gives any older person concerned about AMD, or any patient with early stages or a family history of AMD, even more incentive to avoid risk factors such as smoking and excessive weight."
The study included 1,446 individuals from the Age-Related Eye Disease Study who had 6.3 years of follow-up, of which 279 progressed to the advanced stages of AMD.
About Tufts Medical Center
Tufts Medical Center is a not-for-profit, 439-bed academic medical center that is home to both a full-service hospital for adults and Floating Hospital for Children.
BOSTON, April 23 /PRNewswire-USNewswire/ -- Researchers at Tufts Medical Center have created a formula for predicting how likely it is that individuals with certain genetic profiles and lifestyle behaviors will develop advanced Age-related Macular Degeneration (AMD), a potentially blinding condition that currently affects an estimated two million older Americans and is increasing dramatically as the population ages.
The study, led by Johanna M. Seddon, MD, ScM, Professor of Ophthalmology at Tufts University School of Medicine and Director of the Ophthalmic Epidemiology and Genetics Service at Tufts Medical Center, evaluated six genotypes that either increase or decrease risk for AMD. In addition to age, sex, and education, she also incorporated smoking status and higher body mass index (BMI) which increase risk of AMD, and supplementation with a high-dose formulation of antioxidants and zinc which delays progression of the disease. Using their new algorithm, Dr. Seddon and her colleagues determined that several genotypes plus the lifestyle factors can predict progression to the advanced forms of AMD with a certainty as high as 83%. The paper, "Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables" was published in the May issue of the journal Investigative Ophthalmology & Visual Science.
Their research also shows that although AMD has a strong genetic component, healthy behaviors can modify your genetic susceptibility. For example, among individuals with one genotype, the homozygous C3 risk genotype, the likelihood of progression to the advanced form of AMD increased from about three-fold for nonsmokers to nearly 10-fold for smokers.
"Our algorithm could help with the selection of study participants for treatment trials and could one day enable doctors to choose the most efficacious treatment for individual patients," Dr. Seddon said. "It also gives any older person concerned about AMD, or any patient with early stages or a family history of AMD, even more incentive to avoid risk factors such as smoking and excessive weight."
The study included 1,446 individuals from the Age-Related Eye Disease Study who had 6.3 years of follow-up, of which 279 progressed to the advanced stages of AMD.
About Tufts Medical Center
Tufts Medical Center is a not-for-profit, 439-bed academic medical center that is home to both a full-service hospital for adults and Floating Hospital for Children.
Sunday, April 26, 2009
Othera's Eye Drop to Cure ARMD Seems Promising But Too Early to Tell
Othera's Eye Drop to Cure ARMD Seems Promising But Too Early to Tell
April 16, 2009
Implications
An eye drop that stabilizes the most common form of AMD is encouraging. The ability for an eye drop to be effective is curious. Historically it has been difficult to get any medication effectively delivered to the retina via topical medications. The development of geographic atrophy is very, very slow and it is surprising that a positive trend can be noted in such a short time.
Analysis
Macular degeneration is on the rise. It is estimated that the prevalence of the disease will double in the next 40 years. Macular degeneration is often broken down into "wet" and "dry." The exudative, or wet form, involves choroidal neovascularization and is treated with anti-VEGF treatments such as Avastin, Macugen or Lucentis.
The dry form is the more common form affecting about 90% of all those afflicted with macular degeneration. The most severe of these is geographic atrophy (GA). It is a slowly progressive disease causing damage and loss of the vital underlying RPE cells. It usually takes years for patients to notice a change to their vision.
The news release describes a treatment that may be potentially helpful to most patients that are afflicted with macular degeneration. A simple eye drop to treat this disease is very intriguing. Presently, most treatments for wet macular degeneration involve direct intraocular injection of a substance as topical therapy has traditionally yielded poor drug levels reaching the retinal surface.
Clinically, it has been my experience that the disease progresses very slowly and to notice a change, for better or worse, in such a short time of two years is surprising.
Randall V. Wong, M.D.
April 16, 2009
Implications
An eye drop that stabilizes the most common form of AMD is encouraging. The ability for an eye drop to be effective is curious. Historically it has been difficult to get any medication effectively delivered to the retina via topical medications. The development of geographic atrophy is very, very slow and it is surprising that a positive trend can be noted in such a short time.
Analysis
Macular degeneration is on the rise. It is estimated that the prevalence of the disease will double in the next 40 years. Macular degeneration is often broken down into "wet" and "dry." The exudative, or wet form, involves choroidal neovascularization and is treated with anti-VEGF treatments such as Avastin, Macugen or Lucentis.
The dry form is the more common form affecting about 90% of all those afflicted with macular degeneration. The most severe of these is geographic atrophy (GA). It is a slowly progressive disease causing damage and loss of the vital underlying RPE cells. It usually takes years for patients to notice a change to their vision.
The news release describes a treatment that may be potentially helpful to most patients that are afflicted with macular degeneration. A simple eye drop to treat this disease is very intriguing. Presently, most treatments for wet macular degeneration involve direct intraocular injection of a substance as topical therapy has traditionally yielded poor drug levels reaching the retinal surface.
Clinically, it has been my experience that the disease progresses very slowly and to notice a change, for better or worse, in such a short time of two years is surprising.
Randall V. Wong, M.D.
Sunday, April 19, 2009
Vigorous Exercise May Help Prevent Vision Loss
Vigorous exercise may help prevent vision loss, according to a pair of studies from the U.S. Department of Energy's Lawrence Berkeley National Laboratory. The studies tracked approximately 31,000 runners for more than seven years, and found that running reduced the risk of both cataracts and age-related macular degeneration.
The research, which is among the first to suggest that vigorous exercise may help prevent vision loss, offers hope for people seeking to fend off the onset of eye disease.
"In addition to obtaining regular eye exams, people can take a more active role in preserving their vision," says Paul Williams, an epidemiologist in Berkeley Lab's Life Sciences Division who conducted the research. "The studies suggest that people can perhaps lessen their risk for cataracts and macular degeneration by taking part in a fitness regimen that includes vigorous exercise."
A cataract, which is a cloudy opacity of the eye lens, is the leading cause of blindness. More than one-half of people in the U.S. over the age of 65 suffer from some form of cataracts. Macular degeneration, which is damage to the retina, is the leading cause of irreversible vision loss in older white Americans, affecting 28 percent of people aged 75 and older.
Macular degeneration gradually destroys sharp, central vision. Macular degeneration affects the macula, the part of the eye that allows you to see fine detail. The macula is located in the center of the retina, the light-sensitive tissue at the back of the eye. The retina instantly converts light, or an image, into electrical impulses. The retina then sends these impulses, or nerve signals, to the brain. Macular degeneration causes no pain.
The diseases have several known risk factors, such as sunlight exposure and diabetes in the case of cataracts, but few interventions. Now, it appears that vigorous cardiovascular exercise may be one way to derail the diseases.
To conduct the research, Williams analyzed data collected in the National Runners' Health Study, which he established in 1991 to determine the health benefits of running.
In this case, he followed approximately 29,000 male runners and 12,000 female runners for more than seven years. Of these people, 733 men reported being diagnosed with cataracts on a questionnaire filled out at the end of the study. Too few women reported cataracts to track.
Men who ran more than 5.7 miles per day had a 35 percent lower risk of developing cataracts than men who ran less than 1.4 miles per day. The study also analyzed men's 10-kilometer race performances, which is a good indicator of overall fitness. The fittest men boasted one-half the risk of developing cataracts compared to the least-fit men.
A second study found that running appeared to reduce the risk of macular degeneration. In the study, 152 men and women reported being diagnosed with the disease. Compared to people who ran less than 1.2 miles per day, people who averaged between 1.2 and 2.4 miles per day had a 19 percent lower risk for the disease, and people who ran more than 2.4 miles per day had between 42 percent and 54 percent lower risk of macular degeneration.
"These findings are compelling because of the large size of the study, and the fact that we are looking at something that is fairly well defined: vigorous exercise, as opposed to more moderate exercise," says Williams.
Most of the runners in the study exceeded the current public health recommendations for physical activity, which is at least 30 minutes of moderate-intensity activities such as brisk walking five days a week, or smaller doses of more vigorous exercise such as running. It is unclear whether people might also lower their risk for cataracts and age-related macular degeneration by walking.
"We know there are important health benefits to walking, including lowering heart disease risk," says Williams. "It is quite likely that the studies' results might apply to a lesser extent to smaller doses of more moderate exercise."
Williams also adds that further research is needed to explore why there is a link between vigorous exercise and a decreased risk for eye disease.
"We know some of the physiological benefits of exercise, and we know about the physiological background of these diseases, so we need to better understand where there's an overlap," says Williams.
The research, which is among the first to suggest that vigorous exercise may help prevent vision loss, offers hope for people seeking to fend off the onset of eye disease.
"In addition to obtaining regular eye exams, people can take a more active role in preserving their vision," says Paul Williams, an epidemiologist in Berkeley Lab's Life Sciences Division who conducted the research. "The studies suggest that people can perhaps lessen their risk for cataracts and macular degeneration by taking part in a fitness regimen that includes vigorous exercise."
A cataract, which is a cloudy opacity of the eye lens, is the leading cause of blindness. More than one-half of people in the U.S. over the age of 65 suffer from some form of cataracts. Macular degeneration, which is damage to the retina, is the leading cause of irreversible vision loss in older white Americans, affecting 28 percent of people aged 75 and older.
Macular degeneration gradually destroys sharp, central vision. Macular degeneration affects the macula, the part of the eye that allows you to see fine detail. The macula is located in the center of the retina, the light-sensitive tissue at the back of the eye. The retina instantly converts light, or an image, into electrical impulses. The retina then sends these impulses, or nerve signals, to the brain. Macular degeneration causes no pain.
The diseases have several known risk factors, such as sunlight exposure and diabetes in the case of cataracts, but few interventions. Now, it appears that vigorous cardiovascular exercise may be one way to derail the diseases.
To conduct the research, Williams analyzed data collected in the National Runners' Health Study, which he established in 1991 to determine the health benefits of running.
In this case, he followed approximately 29,000 male runners and 12,000 female runners for more than seven years. Of these people, 733 men reported being diagnosed with cataracts on a questionnaire filled out at the end of the study. Too few women reported cataracts to track.
Men who ran more than 5.7 miles per day had a 35 percent lower risk of developing cataracts than men who ran less than 1.4 miles per day. The study also analyzed men's 10-kilometer race performances, which is a good indicator of overall fitness. The fittest men boasted one-half the risk of developing cataracts compared to the least-fit men.
A second study found that running appeared to reduce the risk of macular degeneration. In the study, 152 men and women reported being diagnosed with the disease. Compared to people who ran less than 1.2 miles per day, people who averaged between 1.2 and 2.4 miles per day had a 19 percent lower risk for the disease, and people who ran more than 2.4 miles per day had between 42 percent and 54 percent lower risk of macular degeneration.
"These findings are compelling because of the large size of the study, and the fact that we are looking at something that is fairly well defined: vigorous exercise, as opposed to more moderate exercise," says Williams.
Most of the runners in the study exceeded the current public health recommendations for physical activity, which is at least 30 minutes of moderate-intensity activities such as brisk walking five days a week, or smaller doses of more vigorous exercise such as running. It is unclear whether people might also lower their risk for cataracts and age-related macular degeneration by walking.
"We know there are important health benefits to walking, including lowering heart disease risk," says Williams. "It is quite likely that the studies' results might apply to a lesser extent to smaller doses of more moderate exercise."
Williams also adds that further research is needed to explore why there is a link between vigorous exercise and a decreased risk for eye disease.
"We know some of the physiological benefits of exercise, and we know about the physiological background of these diseases, so we need to better understand where there's an overlap," says Williams.
Subscribe to:
Posts (Atom)